Metamath Proof Explorer


Theorem nvsass

Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 X=BaseSetU
nvscl.4 S=𝑠OLDU
Assertion nvsass UNrmCVecABCXABSC=ASBSC

Proof

Step Hyp Ref Expression
1 nvscl.1 X=BaseSetU
2 nvscl.4 S=𝑠OLDU
3 eqid 1stU=1stU
4 3 nvvc UNrmCVec1stUCVecOLD
5 eqid +vU=+vU
6 5 vafval +vU=1st1stU
7 2 smfval S=2nd1stU
8 1 5 bafval X=ran+vU
9 6 7 8 vcass 1stUCVecOLDABCXABSC=ASBSC
10 4 9 sylan UNrmCVecABCXABSC=ASBSC