Metamath Proof Explorer


Theorem ipo0

Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ipo0 I Po A A =

Proof

Step Hyp Ref Expression
1 equid x = x
2 vex x V
3 2 ideq x I x x = x
4 1 3 mpbir x I x
5 poirr I Po A x A ¬ x I x
6 5 ex I Po A x A ¬ x I x
7 4 6 mt2i I Po A ¬ x A
8 7 eq0rdv I Po A A =
9 po0 I Po
10 poeq2 A = I Po A I Po
11 9 10 mpbiri A = I Po A
12 8 11 impbii I Po A A =