Metamath Proof Explorer


Theorem ifr0

Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ifr0 I Fr A A =

Proof

Step Hyp Ref Expression
1 equid x = x
2 vex x V
3 2 ideq x I x x = x
4 1 3 mpbir x I x
5 frirr I Fr A x A ¬ x I x
6 5 ex I Fr A x A ¬ x I x
7 4 6 mt2i I Fr A ¬ x A
8 7 eq0rdv I Fr A A =
9 fr0 I Fr
10 freq2 A = I Fr A I Fr
11 9 10 mpbiri A = I Fr A
12 8 11 impbii I Fr A A =