Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifr0 | |- ( _I Fr A <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid | |- x = x |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | ideq | |- ( x _I x <-> x = x ) |
| 4 | 1 3 | mpbir | |- x _I x |
| 5 | frirr | |- ( ( _I Fr A /\ x e. A ) -> -. x _I x ) |
|
| 6 | 5 | ex | |- ( _I Fr A -> ( x e. A -> -. x _I x ) ) |
| 7 | 4 6 | mt2i | |- ( _I Fr A -> -. x e. A ) |
| 8 | 7 | eq0rdv | |- ( _I Fr A -> A = (/) ) |
| 9 | fr0 | |- _I Fr (/) |
|
| 10 | freq2 | |- ( A = (/) -> ( _I Fr A <-> _I Fr (/) ) ) |
|
| 11 | 9 10 | mpbiri | |- ( A = (/) -> _I Fr A ) |
| 12 | 8 11 | impbii | |- ( _I Fr A <-> A = (/) ) |