Metamath Proof Explorer


Theorem frirr

Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 2-Jan-1994) (Revised by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion frirr R Fr A B A ¬ B R B

Proof

Step Hyp Ref Expression
1 simpl R Fr A B A R Fr A
2 snssi B A B A
3 2 adantl R Fr A B A B A
4 snnzg B A B
5 4 adantl R Fr A B A B
6 snex B V
7 6 frc R Fr A B A B y B x B | x R y =
8 1 3 5 7 syl3anc R Fr A B A y B x B | x R y =
9 rabeq0 x B | x R y = x B ¬ x R y
10 breq2 y = B x R y x R B
11 10 notbid y = B ¬ x R y ¬ x R B
12 11 ralbidv y = B x B ¬ x R y x B ¬ x R B
13 9 12 syl5bb y = B x B | x R y = x B ¬ x R B
14 13 rexsng B A y B x B | x R y = x B ¬ x R B
15 breq1 x = B x R B B R B
16 15 notbid x = B ¬ x R B ¬ B R B
17 16 ralsng B A x B ¬ x R B ¬ B R B
18 14 17 bitrd B A y B x B | x R y = ¬ B R B
19 18 adantl R Fr A B A y B x B | x R y = ¬ B R B
20 8 19 mpbid R Fr A B A ¬ B R B