Metamath Proof Explorer


Theorem ipo0

Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ipo0 ( I Po 𝐴𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 equid 𝑥 = 𝑥
2 vex 𝑥 ∈ V
3 2 ideq ( 𝑥 I 𝑥𝑥 = 𝑥 )
4 1 3 mpbir 𝑥 I 𝑥
5 poirr ( ( I Po 𝐴𝑥𝐴 ) → ¬ 𝑥 I 𝑥 )
6 5 ex ( I Po 𝐴 → ( 𝑥𝐴 → ¬ 𝑥 I 𝑥 ) )
7 4 6 mt2i ( I Po 𝐴 → ¬ 𝑥𝐴 )
8 7 eq0rdv ( I Po 𝐴𝐴 = ∅ )
9 po0 I Po ∅
10 poeq2 ( 𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅ ) )
11 9 10 mpbiri ( 𝐴 = ∅ → I Po 𝐴 )
12 8 11 impbii ( I Po 𝐴𝐴 = ∅ )