Metamath Proof Explorer
Description: If the identity relation partially orders any class, then that class is
the null class. (Contributed by Andrew Salmon, 25-Jul-2011)
|
|
Ref |
Expression |
|
Assertion |
ipo0 |
⊢ ( I Po 𝐴 ↔ 𝐴 = ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
2
|
ideq |
⊢ ( 𝑥 I 𝑥 ↔ 𝑥 = 𝑥 ) |
| 4 |
1 3
|
mpbir |
⊢ 𝑥 I 𝑥 |
| 5 |
|
poirr |
⊢ ( ( I Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 I 𝑥 ) |
| 6 |
5
|
ex |
⊢ ( I Po 𝐴 → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥 ) ) |
| 7 |
4 6
|
mt2i |
⊢ ( I Po 𝐴 → ¬ 𝑥 ∈ 𝐴 ) |
| 8 |
7
|
eq0rdv |
⊢ ( I Po 𝐴 → 𝐴 = ∅ ) |
| 9 |
|
po0 |
⊢ I Po ∅ |
| 10 |
|
poeq2 |
⊢ ( 𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅ ) ) |
| 11 |
9 10
|
mpbiri |
⊢ ( 𝐴 = ∅ → I Po 𝐴 ) |
| 12 |
8 11
|
impbii |
⊢ ( I Po 𝐴 ↔ 𝐴 = ∅ ) |