Metamath Proof Explorer


Theorem ipo0

Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ipo0 IPoAA=

Proof

Step Hyp Ref Expression
1 equid x=x
2 vex xV
3 2 ideq xIxx=x
4 1 3 mpbir xIx
5 poirr IPoAxA¬xIx
6 5 ex IPoAxA¬xIx
7 4 6 mt2i IPoA¬xA
8 7 eq0rdv IPoAA=
9 po0 IPo
10 poeq2 A=IPoAIPo
11 9 10 mpbiri A=IPoA
12 8 11 impbii IPoAA=