Metamath Proof Explorer


Theorem ipotset

Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015)

Ref Expression
Hypotheses ipoval.i I=toIncF
ipole.l ˙=I
Assertion ipotset FVordTop˙=TopSetI

Proof

Step Hyp Ref Expression
1 ipoval.i I=toIncF
2 ipole.l ˙=I
3 fvex ordTopxy|xyFxyV
4 ipostr BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=Struct111
5 tsetid TopSet=SlotTopSetndx
6 snsspr2 TopSetndxordTopxy|xyFxyBasendxFTopSetndxordTopxy|xyFxy
7 ssun1 BasendxFTopSetndxordTopxy|xyFxyBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
8 6 7 sstri TopSetndxordTopxy|xyFxyBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
9 4 5 8 strfv ordTopxy|xyFxyVordTopxy|xyFxy=TopSetBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
10 3 9 ax-mp ordTopxy|xyFxy=TopSetBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
11 1 ipolerval FVxy|xyFxy=I
12 2 11 eqtr4id FV˙=xy|xyFxy
13 12 fveq2d FVordTop˙=ordTopxy|xyFxy
14 eqid xy|xyFxy=xy|xyFxy
15 1 14 ipoval FVI=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
16 15 fveq2d FVTopSetI=TopSetBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
17 10 13 16 3eqtr4a FVordTop˙=TopSetI