Metamath Proof Explorer


Theorem ipsstr

Description: Lemma to shorten proofs of ipsbase through ipsvsca . (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
Assertion ipsstr AStruct18

Proof

Step Hyp Ref Expression
1 ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
2 eqid BasendxB+ndx+˙ndx×˙=BasendxB+ndx+˙ndx×˙
3 2 rngstr BasendxB+ndx+˙ndx×˙Struct13
4 5nn 5
5 scandx Scalarndx=5
6 5lt6 5<6
7 6nn 6
8 vscandx ndx=6
9 6lt8 6<8
10 8nn 8
11 ipndx 𝑖ndx=8
12 4 5 6 7 8 9 10 11 strle3 ScalarndxSndx·˙𝑖ndxIStruct58
13 3lt5 3<5
14 3 12 13 strleun BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxIStruct18
15 1 14 eqbrtri AStruct18