Metamath Proof Explorer


Theorem ipval2lem4

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
Assertion ipval2lem4 UNrmCVecAXBXCNAGCSB2

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 1 2 3 4 5 ipval2lem2 UNrmCVecAXBXCNAGCSB2
7 6 recnd UNrmCVecAXBXCNAGCSB2