Metamath Proof Explorer


Theorem ipval2lem2

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
Assertion ipval2lem2 UNrmCVecAXBXCNAGCSB2

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 simpl1 UNrmCVecAXBXCUNrmCVec
7 simpl2 UNrmCVecAXBXCAX
8 1 3 nvscl UNrmCVecCBXCSBX
9 8 3com23 UNrmCVecBXCCSBX
10 9 3expa UNrmCVecBXCCSBX
11 10 3adantl2 UNrmCVecAXBXCCSBX
12 1 2 nvgcl UNrmCVecAXCSBXAGCSBX
13 6 7 11 12 syl3anc UNrmCVecAXBXCAGCSBX
14 1 4 nvcl UNrmCVecAGCSBXNAGCSB
15 6 13 14 syl2anc UNrmCVecAXBXCNAGCSB
16 15 resqcld UNrmCVecAXBXCNAGCSB2