Metamath Proof Explorer


Theorem ipz

Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses dip0r.1 X=BaseSetU
dip0r.5 Z=0vecU
dip0r.7 P=𝑖OLDU
Assertion ipz UNrmCVecAXAPA=0A=Z

Proof

Step Hyp Ref Expression
1 dip0r.1 X=BaseSetU
2 dip0r.5 Z=0vecU
3 dip0r.7 P=𝑖OLDU
4 eqid normCVU=normCVU
5 1 4 3 ipidsq UNrmCVecAXAPA=normCVUA2
6 5 eqeq1d UNrmCVecAXAPA=0normCVUA2=0
7 1 4 nvcl UNrmCVecAXnormCVUA
8 7 recnd UNrmCVecAXnormCVUA
9 sqeq0 normCVUAnormCVUA2=0normCVUA=0
10 8 9 syl UNrmCVecAXnormCVUA2=0normCVUA=0
11 1 2 4 nvz UNrmCVecAXnormCVUA=0A=Z
12 6 10 11 3bitrd UNrmCVecAXAPA=0A=Z