Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irredn0.i | |
|
irredrmul.u | |
||
irredrmul.t | |
||
Assertion | irredlmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredn0.i | |
|
2 | irredrmul.u | |
|
3 | irredrmul.t | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 4 3 5 6 | opprmul | |
8 | 5 | opprring | |
9 | 5 1 | opprirred | |
10 | 2 5 | opprunit | |
11 | 9 10 6 | irredrmul | |
12 | 8 11 | syl3an1 | |
13 | 12 | 3com23 | |
14 | 7 13 | eqeltrrid | |