Metamath Proof Explorer


Theorem irredlmul

Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irredrmul.u U=UnitR
irredrmul.t ·˙=R
Assertion irredlmul RRingXUYIX·˙YI

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irredrmul.u U=UnitR
3 irredrmul.t ·˙=R
4 eqid BaseR=BaseR
5 eqid opprR=opprR
6 eqid opprR=opprR
7 4 3 5 6 opprmul YopprRX=X·˙Y
8 5 opprring RRingopprRRing
9 5 1 opprirred I=IrredopprR
10 2 5 opprunit U=UnitopprR
11 9 10 6 irredrmul opprRRingYIXUYopprRXI
12 8 11 syl3an1 RRingYIXUYopprRXI
13 12 3com23 RRingXUYIYopprRXI
14 7 13 eqeltrrid RRingXUYIX·˙YI