Metamath Proof Explorer


Theorem irredn1

Description: The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irredn1.o 1˙=1R
Assertion irredn1 RRingXIX1˙

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irredn1.o 1˙=1R
3 eqid UnitR=UnitR
4 3 2 1unit RRing1˙UnitR
5 eleq1 X=1˙XUnitR1˙UnitR
6 4 5 syl5ibrcom RRingX=1˙XUnitR
7 6 necon3bd RRing¬XUnitRX1˙
8 1 3 irrednu XI¬XUnitR
9 7 8 impel RRingXIX1˙