Metamath Proof Explorer


Theorem isabl2

Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses iscmn.b B=BaseG
iscmn.p +˙=+G
Assertion isabl2 GAbelGGrpxByBx+˙y=y+˙x

Proof

Step Hyp Ref Expression
1 iscmn.b B=BaseG
2 iscmn.p +˙=+G
3 isabl GAbelGGrpGCMnd
4 grpmnd GGrpGMnd
5 1 2 iscmn GCMndGMndxByBx+˙y=y+˙x
6 5 baib GMndGCMndxByBx+˙y=y+˙x
7 4 6 syl GGrpGCMndxByBx+˙y=y+˙x
8 7 pm5.32i GGrpGCMndGGrpxByBx+˙y=y+˙x
9 3 8 bitri GAbelGGrpxByBx+˙y=y+˙x