Metamath Proof Explorer


Theorem isablo

Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypothesis isabl.1 X=ranG
Assertion isablo GAbelOpGGrpOpxXyXxGy=yGx

Proof

Step Hyp Ref Expression
1 isabl.1 X=ranG
2 rneq g=Grang=ranG
3 2 1 eqtr4di g=Grang=X
4 raleq rang=Xyrangxgy=ygxyXxgy=ygx
5 4 raleqbi1dv rang=Xxrangyrangxgy=ygxxXyXxgy=ygx
6 3 5 syl g=Gxrangyrangxgy=ygxxXyXxgy=ygx
7 oveq g=Gxgy=xGy
8 oveq g=Gygx=yGx
9 7 8 eqeq12d g=Gxgy=ygxxGy=yGx
10 9 2ralbidv g=GxXyXxgy=ygxxXyXxGy=yGx
11 6 10 bitrd g=Gxrangyrangxgy=ygxxXyXxGy=yGx
12 df-ablo AbelOp=gGrpOp|xrangyrangxgy=ygx
13 11 12 elrab2 GAbelOpGGrpOpxXyXxGy=yGx