Metamath Proof Explorer


Theorem isarep1OLD

Description: Obsolete version of isarep1 as of 19-Dec-2024. (Contributed by NM, 26-Oct-2006) (Proof shortened by Mario Carneiro, 4-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isarep1OLD bxy|φAxAbyφ

Proof

Step Hyp Ref Expression
1 vex bV
2 1 elima bxy|φAzAzxy|φb
3 df-br zxy|φbzbxy|φ
4 opelopabsb zbxy|φ[˙z/x]˙[˙b/y]˙φ
5 sbsbc byφ[˙b/y]˙φ
6 5 sbbii zxbyφzx[˙b/y]˙φ
7 sbsbc zx[˙b/y]˙φ[˙z/x]˙[˙b/y]˙φ
8 6 7 bitr2i [˙z/x]˙[˙b/y]˙φzxbyφ
9 3 4 8 3bitri zxy|φbzxbyφ
10 9 rexbii zAzxy|φbzAzxbyφ
11 nfs1v xzxbyφ
12 nfv zbyφ
13 sbequ12r z=xzxbyφbyφ
14 11 12 13 cbvrexw zAzxbyφxAbyφ
15 2 10 14 3bitri bxy|φAxAbyφ