Metamath Proof Explorer


Theorem isarep2

Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex . (Contributed by NM, 26-Oct-2006)

Ref Expression
Hypotheses isarep2.1 AV
isarep2.2 xAyzφzyφy=z
Assertion isarep2 ww=xy|φA

Proof

Step Hyp Ref Expression
1 isarep2.1 AV
2 isarep2.2 xAyzφzyφy=z
3 resima xy|φAA=xy|φA
4 resopab xy|φA=xy|xAφ
5 4 imaeq1i xy|φAA=xy|xAφA
6 3 5 eqtr3i xy|φA=xy|xAφA
7 funopab Funxy|xAφx*yxAφ
8 2 rspec xAyzφzyφy=z
9 nfv zφ
10 9 mo3 *yφyzφzyφy=z
11 8 10 sylibr xA*yφ
12 moanimv *yxAφxA*yφ
13 11 12 mpbir *yxAφ
14 7 13 mpgbir Funxy|xAφ
15 1 funimaex Funxy|xAφxy|xAφAV
16 14 15 ax-mp xy|xAφAV
17 6 16 eqeltri xy|φAV
18 17 isseti ww=xy|φA