| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isarep2.1 |  |-  A e. _V | 
						
							| 2 |  | isarep2.2 |  |-  A. x e. A A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) | 
						
							| 3 |  | resima |  |-  ( ( { <. x , y >. | ph } |` A ) " A ) = ( { <. x , y >. | ph } " A ) | 
						
							| 4 |  | resopab |  |-  ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } | 
						
							| 5 | 4 | imaeq1i |  |-  ( ( { <. x , y >. | ph } |` A ) " A ) = ( { <. x , y >. | ( x e. A /\ ph ) } " A ) | 
						
							| 6 | 3 5 | eqtr3i |  |-  ( { <. x , y >. | ph } " A ) = ( { <. x , y >. | ( x e. A /\ ph ) } " A ) | 
						
							| 7 |  | funopab |  |-  ( Fun { <. x , y >. | ( x e. A /\ ph ) } <-> A. x E* y ( x e. A /\ ph ) ) | 
						
							| 8 | 2 | rspec |  |-  ( x e. A -> A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) ) | 
						
							| 9 |  | nfv |  |-  F/ z ph | 
						
							| 10 | 9 | mo3 |  |-  ( E* y ph <-> A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) ) | 
						
							| 11 | 8 10 | sylibr |  |-  ( x e. A -> E* y ph ) | 
						
							| 12 |  | moanimv |  |-  ( E* y ( x e. A /\ ph ) <-> ( x e. A -> E* y ph ) ) | 
						
							| 13 | 11 12 | mpbir |  |-  E* y ( x e. A /\ ph ) | 
						
							| 14 | 7 13 | mpgbir |  |-  Fun { <. x , y >. | ( x e. A /\ ph ) } | 
						
							| 15 | 1 | funimaex |  |-  ( Fun { <. x , y >. | ( x e. A /\ ph ) } -> ( { <. x , y >. | ( x e. A /\ ph ) } " A ) e. _V ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( { <. x , y >. | ( x e. A /\ ph ) } " A ) e. _V | 
						
							| 17 | 6 16 | eqeltri |  |-  ( { <. x , y >. | ph } " A ) e. _V | 
						
							| 18 | 17 | isseti |  |-  E. w w = ( { <. x , y >. | ph } " A ) |