| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex |  |-  b e. _V | 
						
							| 2 | 1 | elima |  |-  ( b e. ( { <. x , y >. | ph } " A ) <-> E. z e. A z { <. x , y >. | ph } b ) | 
						
							| 3 |  | df-br |  |-  ( z { <. x , y >. | ph } b <-> <. z , b >. e. { <. x , y >. | ph } ) | 
						
							| 4 |  | opelopabsb |  |-  ( <. z , b >. e. { <. x , y >. | ph } <-> [. z / x ]. [. b / y ]. ph ) | 
						
							| 5 |  | sbsbc |  |-  ( [ b / y ] ph <-> [. b / y ]. ph ) | 
						
							| 6 | 5 | sbbii |  |-  ( [ z / x ] [ b / y ] ph <-> [ z / x ] [. b / y ]. ph ) | 
						
							| 7 |  | sbsbc |  |-  ( [ z / x ] [. b / y ]. ph <-> [. z / x ]. [. b / y ]. ph ) | 
						
							| 8 | 6 7 | bitr2i |  |-  ( [. z / x ]. [. b / y ]. ph <-> [ z / x ] [ b / y ] ph ) | 
						
							| 9 | 3 4 8 | 3bitri |  |-  ( z { <. x , y >. | ph } b <-> [ z / x ] [ b / y ] ph ) | 
						
							| 10 | 9 | rexbii |  |-  ( E. z e. A z { <. x , y >. | ph } b <-> E. z e. A [ z / x ] [ b / y ] ph ) | 
						
							| 11 |  | nfs1v |  |-  F/ x [ z / x ] [ b / y ] ph | 
						
							| 12 |  | nfv |  |-  F/ z [ b / y ] ph | 
						
							| 13 |  | sbequ12r |  |-  ( z = x -> ( [ z / x ] [ b / y ] ph <-> [ b / y ] ph ) ) | 
						
							| 14 | 11 12 13 | cbvrexw |  |-  ( E. z e. A [ z / x ] [ b / y ] ph <-> E. x e. A [ b / y ] ph ) | 
						
							| 15 | 2 10 14 | 3bitri |  |-  ( b e. ( { <. x , y >. | ph } " A ) <-> E. x e. A [ b / y ] ph ) |