Metamath Proof Explorer


Theorem isasslaw

Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009) (Revised by AV, 13-Jan-2020)

Ref Expression
Assertion isasslaw Could not format assertion : No typesetting found for |- ( ( .o. e. V /\ M e. W ) -> ( .o. assLaw M <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 simpr Could not format ( ( o = .o. /\ m = M ) -> m = M ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> m = M ) with typecode |-
2 id Could not format ( o = .o. -> o = .o. ) : No typesetting found for |- ( o = .o. -> o = .o. ) with typecode |-
3 oveq Could not format ( o = .o. -> ( x o y ) = ( x .o. y ) ) : No typesetting found for |- ( o = .o. -> ( x o y ) = ( x .o. y ) ) with typecode |-
4 eqidd Could not format ( o = .o. -> z = z ) : No typesetting found for |- ( o = .o. -> z = z ) with typecode |-
5 2 3 4 oveq123d Could not format ( o = .o. -> ( ( x o y ) o z ) = ( ( x .o. y ) .o. z ) ) : No typesetting found for |- ( o = .o. -> ( ( x o y ) o z ) = ( ( x .o. y ) .o. z ) ) with typecode |-
6 eqidd Could not format ( o = .o. -> x = x ) : No typesetting found for |- ( o = .o. -> x = x ) with typecode |-
7 oveq Could not format ( o = .o. -> ( y o z ) = ( y .o. z ) ) : No typesetting found for |- ( o = .o. -> ( y o z ) = ( y .o. z ) ) with typecode |-
8 2 6 7 oveq123d Could not format ( o = .o. -> ( x o ( y o z ) ) = ( x .o. ( y .o. z ) ) ) : No typesetting found for |- ( o = .o. -> ( x o ( y o z ) ) = ( x .o. ( y .o. z ) ) ) with typecode |-
9 5 8 eqeq12d Could not format ( o = .o. -> ( ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( o = .o. -> ( ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
10 9 adantr Could not format ( ( o = .o. /\ m = M ) -> ( ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
11 1 10 raleqbidv Could not format ( ( o = .o. /\ m = M ) -> ( A. z e. m ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( A. z e. m ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
12 1 11 raleqbidv Could not format ( ( o = .o. /\ m = M ) -> ( A. y e. m A. z e. m ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( A. y e. m A. z e. m ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
13 1 12 raleqbidv Could not format ( ( o = .o. /\ m = M ) -> ( A. x e. m A. y e. m A. z e. m ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( ( o = .o. /\ m = M ) -> ( A. x e. m A. y e. m A. z e. m ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
14 df-asslaw assLaw = o m | x m y m z m x o y o z = x o y o z
15 13 14 brabga Could not format ( ( .o. e. V /\ M e. W ) -> ( .o. assLaw M <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( ( .o. e. V /\ M e. W ) -> ( .o. assLaw M <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-