Metamath Proof Explorer


Theorem isausgr

Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017)

Ref Expression
Hypothesis ausgr.1 G=ve|ex𝒫v|x=2
Assertion isausgr VWEXVGEEx𝒫V|x=2

Proof

Step Hyp Ref Expression
1 ausgr.1 G=ve|ex𝒫v|x=2
2 simpr v=Ve=Ee=E
3 pweq v=V𝒫v=𝒫V
4 3 adantr v=Ve=E𝒫v=𝒫V
5 4 rabeqdv v=Ve=Ex𝒫v|x=2=x𝒫V|x=2
6 2 5 sseq12d v=Ve=Eex𝒫v|x=2Ex𝒫V|x=2
7 6 1 brabga VWEXVGEEx𝒫V|x=2