Metamath Proof Explorer


Theorem isch2

Description: Closed subspace H of a Hilbert space. Definition of Beran p. 107. (Contributed by NM, 17-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion isch2 HCHSfxf:HfvxxH

Proof

Step Hyp Ref Expression
1 isch HCHSvHH
2 alcom fxfHfvxxHxffHfvxxH
3 19.23v ffHfvxxHffHfvxxH
4 vex xV
5 4 elima2 xvHffHfvx
6 5 imbi1i xvHxHffHfvxxH
7 3 6 bitr4i ffHfvxxHxvHxH
8 7 albii xffHfvxxHxxvHxH
9 dfss2 vHHxxvHxH
10 8 9 bitr4i xffHfvxxHvHH
11 2 10 bitri fxfHfvxxHvHH
12 nnex V
13 elmapg HSVfHf:H
14 12 13 mpan2 HSfHf:H
15 14 anbi1d HSfHfvxf:Hfvx
16 15 imbi1d HSfHfvxxHf:HfvxxH
17 16 2albidv HSfxfHfvxxHfxf:HfvxxH
18 11 17 bitr3id HSvHHfxf:HfvxxH
19 18 pm5.32i HSvHHHSfxf:HfvxxH
20 1 19 bitri HCHSfxf:HfvxxH