Metamath Proof Explorer


Theorem isclmi0

Description: Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006) (Revised by AV, 4-Oct-2021)

Ref Expression
Hypotheses isclmp.t ·˙=W
isclmp.a +˙=+W
isclmp.v V=BaseW
isclmp.s S=ScalarW
isclmp.k K=BaseS
isclmi0.1 S=fld𝑠K
isclmi0.2 WGrp
isclmi0.3 KSubRingfld
isclmi0.4 xV1·˙x=x
isclmi0.5 yKxVy·˙xV
isclmi0.6 yKxVzVy·˙x+˙z=y·˙x+˙y·˙z
isclmi0.7 yKzKxVz+y·˙x=z·˙x+˙y·˙x
isclmi0.8 yKzKxVzy·˙x=z·˙y·˙x
Assertion isclmi0 WCMod

Proof

Step Hyp Ref Expression
1 isclmp.t ·˙=W
2 isclmp.a +˙=+W
3 isclmp.v V=BaseW
4 isclmp.s S=ScalarW
5 isclmp.k K=BaseS
6 isclmi0.1 S=fld𝑠K
7 isclmi0.2 WGrp
8 isclmi0.3 KSubRingfld
9 isclmi0.4 xV1·˙x=x
10 isclmi0.5 yKxVy·˙xV
11 isclmi0.6 yKxVzVy·˙x+˙z=y·˙x+˙y·˙z
12 isclmi0.7 yKzKxVz+y·˙x=z·˙x+˙y·˙x
13 isclmi0.8 yKzKxVzy·˙x=z·˙y·˙x
14 7 6 8 3pm3.2i WGrpS=fld𝑠KKSubRingfld
15 10 ancoms xVyKy·˙xV
16 11 3com12 xVyKzVy·˙x+˙z=y·˙x+˙y·˙z
17 16 3expa xVyKzVy·˙x+˙z=y·˙x+˙y·˙z
18 17 ralrimiva xVyKzVy·˙x+˙z=y·˙x+˙y·˙z
19 12 13 jca yKzKxVz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
20 19 3comr xVyKzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
21 20 3expa xVyKzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
22 21 ralrimiva xVyKzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
23 15 18 22 3jca xVyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
24 23 ralrimiva xVyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
25 9 24 jca xV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
26 25 rgen xV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
27 1 2 3 4 5 isclmp WCModWGrpS=fld𝑠KKSubRingfldxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
28 14 26 27 mpbir2an WCMod