Metamath Proof Explorer


Theorem iscom2

Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)

Ref Expression
Assertion iscom2 GAHBGHCom2aranGbranGaHb=bHa

Proof

Step Hyp Ref Expression
1 df-com2 Com2=xy|aranxbranxayb=bya
2 1 a1i GAHBCom2=xy|aranxbranxayb=bya
3 2 eleq2d GAHBGHCom2GHxy|aranxbranxayb=bya
4 rneq x=Granx=ranG
5 4 raleqdv x=Gbranxayb=byabranGayb=bya
6 4 5 raleqbidv x=Garanxbranxayb=byaaranGbranGayb=bya
7 oveq y=Hayb=aHb
8 oveq y=Hbya=bHa
9 7 8 eqeq12d y=Hayb=byaaHb=bHa
10 9 2ralbidv y=HaranGbranGayb=byaaranGbranGaHb=bHa
11 6 10 opelopabg GAHBGHxy|aranxbranxayb=byaaranGbranGaHb=bHa
12 3 11 bitrd GAHBGHCom2aranGbranGaHb=bHa