Metamath Proof Explorer


Theorem iscygd

Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B=BaseG
iscyg.2 ·˙=G
iscygd.3 φGGrp
iscygd.4 φXB
iscygd.5 φyBny=n·˙X
Assertion iscygd φGCycGrp

Proof

Step Hyp Ref Expression
1 iscyg.1 B=BaseG
2 iscyg.2 ·˙=G
3 iscygd.3 φGGrp
4 iscygd.4 φXB
5 iscygd.5 φyBny=n·˙X
6 5 ralrimiva φyBny=n·˙X
7 eqid xB|rannn·˙x=B=xB|rannn·˙x=B
8 1 2 7 iscyggen2 GGrpXxB|rannn·˙x=BXByBny=n·˙X
9 3 8 syl φXxB|rannn·˙x=BXByBny=n·˙X
10 4 6 9 mpbir2and φXxB|rannn·˙x=B
11 10 ne0d φxB|rannn·˙x=B
12 1 2 7 iscyg2 GCycGrpGGrpxB|rannn·˙x=B
13 3 11 12 sylanbrc φGCycGrp