Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscygodd.1 | |
|
iscygodd.o | |
||
iscygodd.3 | |
||
iscygodd.4 | |
||
iscygodd.5 | |
||
Assertion | iscygodd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscygodd.1 | |
|
2 | iscygodd.o | |
|
3 | iscygodd.3 | |
|
4 | iscygodd.4 | |
|
5 | iscygodd.5 | |
|
6 | 1 2 | odcl | |
7 | 4 6 | syl | |
8 | 5 7 | eqeltrrd | |
9 | 1 | fvexi | |
10 | hashclb | |
|
11 | 9 10 | ax-mp | |
12 | 8 11 | sylibr | |
13 | eqid | |
|
14 | eqid | |
|
15 | 1 13 14 2 | cyggenod | |
16 | 3 12 15 | syl2anc | |
17 | 4 5 16 | mpbir2and | |
18 | 17 | ne0d | |
19 | 1 13 14 | iscyg2 | |
20 | 3 18 19 | sylanbrc | |