Metamath Proof Explorer


Theorem iscygodd

Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses iscygodd.1 B=BaseG
iscygodd.o O=odG
iscygodd.3 φGGrp
iscygodd.4 φXB
iscygodd.5 φOX=B
Assertion iscygodd φGCycGrp

Proof

Step Hyp Ref Expression
1 iscygodd.1 B=BaseG
2 iscygodd.o O=odG
3 iscygodd.3 φGGrp
4 iscygodd.4 φXB
5 iscygodd.5 φOX=B
6 1 2 odcl XBOX0
7 4 6 syl φOX0
8 5 7 eqeltrrd φB0
9 1 fvexi BV
10 hashclb BVBFinB0
11 9 10 ax-mp BFinB0
12 8 11 sylibr φBFin
13 eqid G=G
14 eqid xB|rannnGx=B=xB|rannnGx=B
15 1 13 14 2 cyggenod GGrpBFinXxB|rannnGx=BXBOX=B
16 3 12 15 syl2anc φXxB|rannnGx=BXBOX=B
17 4 5 16 mpbir2and φXxB|rannnGx=B
18 17 ne0d φxB|rannnGx=B
19 1 13 14 iscyg2 GCycGrpGGrpxB|rannnGx=B
20 3 18 19 sylanbrc φGCycGrp