Metamath Proof Explorer


Theorem iseqlgd

Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses iseqlg.p P=BaseG
iseqlg.m -˙=distG
iseqlg.i I=ItvG
iseqlg.l L=Line𝒢G
iseqlg.g φG𝒢Tarski
iseqlg.a φAP
iseqlg.b φBP
iseqlg.c φCP
iseqlgd.1 φA-˙B=B-˙C
iseqlgd.2 φB-˙C=C-˙A
iseqlgd.3 φC-˙A=A-˙B
Assertion iseqlgd φ⟨“ABC”⟩Equilaterals𝒢G

Proof

Step Hyp Ref Expression
1 iseqlg.p P=BaseG
2 iseqlg.m -˙=distG
3 iseqlg.i I=ItvG
4 iseqlg.l L=Line𝒢G
5 iseqlg.g φG𝒢Tarski
6 iseqlg.a φAP
7 iseqlg.b φBP
8 iseqlg.c φCP
9 iseqlgd.1 φA-˙B=B-˙C
10 iseqlgd.2 φB-˙C=C-˙A
11 iseqlgd.3 φC-˙A=A-˙B
12 eqid 𝒢G=𝒢G
13 1 2 12 5 6 7 8 7 8 6 9 10 11 trgcgr φ⟨“ABC”⟩𝒢G⟨“BCA”⟩
14 1 2 3 4 5 6 7 8 iseqlg φ⟨“ABC”⟩Equilaterals𝒢G⟨“ABC”⟩𝒢G⟨“BCA”⟩
15 13 14 mpbird φ⟨“ABC”⟩Equilaterals𝒢G