Metamath Proof Explorer


Theorem iseqlgd

Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses iseqlg.p P = Base G
iseqlg.m - ˙ = dist G
iseqlg.i I = Itv G
iseqlg.l L = Line 𝒢 G
iseqlg.g φ G 𝒢 Tarski
iseqlg.a φ A P
iseqlg.b φ B P
iseqlg.c φ C P
iseqlgd.1 φ A - ˙ B = B - ˙ C
iseqlgd.2 φ B - ˙ C = C - ˙ A
iseqlgd.3 φ C - ˙ A = A - ˙ B
Assertion iseqlgd φ ⟨“ ABC ”⟩ Equilaterals 𝒢 G

Proof

Step Hyp Ref Expression
1 iseqlg.p P = Base G
2 iseqlg.m - ˙ = dist G
3 iseqlg.i I = Itv G
4 iseqlg.l L = Line 𝒢 G
5 iseqlg.g φ G 𝒢 Tarski
6 iseqlg.a φ A P
7 iseqlg.b φ B P
8 iseqlg.c φ C P
9 iseqlgd.1 φ A - ˙ B = B - ˙ C
10 iseqlgd.2 φ B - ˙ C = C - ˙ A
11 iseqlgd.3 φ C - ˙ A = A - ˙ B
12 eqid 𝒢 G = 𝒢 G
13 1 2 12 5 6 7 8 7 8 6 9 10 11 trgcgr φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ BCA ”⟩
14 1 2 3 4 5 6 7 8 iseqlg φ ⟨“ ABC ”⟩ Equilaterals 𝒢 G ⟨“ ABC ”⟩ 𝒢 G ⟨“ BCA ”⟩
15 13 14 mpbird φ ⟨“ ABC ”⟩ Equilaterals 𝒢 G