Metamath Proof Explorer


Theorem isfin1-4

Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin1-4 AVAFin[⊂]Fr𝒫A

Proof

Step Hyp Ref Expression
1 isfin1-3 AVAFin[⊂]-1Fr𝒫A
2 eqid x𝒫AAx=x𝒫AAx
3 2 compssiso AVx𝒫AAxIsom[⊂],[⊂]-1𝒫A𝒫A
4 isofr x𝒫AAxIsom[⊂],[⊂]-1𝒫A𝒫A[⊂]Fr𝒫A[⊂]-1Fr𝒫A
5 3 4 syl AV[⊂]Fr𝒫A[⊂]-1Fr𝒫A
6 1 5 bitr4d AVAFin[⊂]Fr𝒫A