Metamath Proof Explorer


Theorem isfne2

Description: The predicate " B is finer than A ". (Contributed by Jeff Hankins, 28-Sep-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses isfne.1 X=A
isfne.2 Y=B
Assertion isfne2 BCAFneBX=YxAyxzByzzx

Proof

Step Hyp Ref Expression
1 isfne.1 X=A
2 isfne.2 Y=B
3 1 2 isfne4 AFneBX=YAtopGenB
4 dfss3 AtopGenBxAxtopGenB
5 eltg2b BCxtopGenByxzByzzx
6 5 ralbidv BCxAxtopGenBxAyxzByzzx
7 4 6 bitrid BCAtopGenBxAyxzByzzx
8 7 anbi2d BCX=YAtopGenBX=YxAyxzByzzx
9 3 8 bitrid BCAFneBX=YxAyxzByzzx