Metamath Proof Explorer


Theorem isfusgrf1

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses isfusgr.v V=VtxG
isfusgrf1.i I=iEdgG
Assertion isfusgrf1 GWGFinUSGraphI:domI1-1x𝒫V|x=2VFin

Proof

Step Hyp Ref Expression
1 isfusgr.v V=VtxG
2 isfusgrf1.i I=iEdgG
3 1 isfusgr GFinUSGraphGUSGraphVFin
4 1 2 isusgrs GWGUSGraphI:domI1-1x𝒫V|x=2
5 4 anbi1d GWGUSGraphVFinI:domI1-1x𝒫V|x=2VFin
6 3 5 bitrid GWGFinUSGraphI:domI1-1x𝒫V|x=2VFin