Metamath Proof Explorer


Theorem ishlatiN

Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses ishlati.1 KOML
ishlati.2 KCLat
ishlati.3 KAtLat
ishlati.b B=BaseK
ishlati.l ˙=K
ishlati.s <˙=<K
ishlati.j ˙=joinK
ishlati.z 0˙=0.K
ishlati.u 1˙=1.K
ishlati.a A=AtomsK
ishlati.9 xAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙x
ishlati.10 xByBzB0˙<˙xx<˙yy<˙zz<˙1˙
Assertion ishlatiN KHL

Proof

Step Hyp Ref Expression
1 ishlati.1 KOML
2 ishlati.2 KCLat
3 ishlati.3 KAtLat
4 ishlati.b B=BaseK
5 ishlati.l ˙=K
6 ishlati.s <˙=<K
7 ishlati.j ˙=joinK
8 ishlati.z 0˙=0.K
9 ishlati.u 1˙=1.K
10 ishlati.a A=AtomsK
11 ishlati.9 xAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙x
12 ishlati.10 xByBzB0˙<˙xx<˙yy<˙zz<˙1˙
13 1 2 3 3pm3.2i KOMLKCLatKAtLat
14 11 12 pm3.2i xAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
15 4 5 6 7 8 9 10 ishlat2 KHLKOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
16 13 14 15 mpbir2an KHL