Metamath Proof Explorer


Theorem ishlatiN

Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses ishlati.1 𝐾 ∈ OML
ishlati.2 𝐾 ∈ CLat
ishlati.3 𝐾 ∈ AtLat
ishlati.b 𝐵 = ( Base ‘ 𝐾 )
ishlati.l = ( le ‘ 𝐾 )
ishlati.s < = ( lt ‘ 𝐾 )
ishlati.j = ( join ‘ 𝐾 )
ishlati.z 0 = ( 0. ‘ 𝐾 )
ishlati.u 1 = ( 1. ‘ 𝐾 )
ishlati.a 𝐴 = ( Atoms ‘ 𝐾 )
ishlati.9 𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∀ 𝑧𝐵 ( ( ¬ 𝑥 𝑧𝑥 ( 𝑧 𝑦 ) ) → 𝑦 ( 𝑧 𝑥 ) ) )
ishlati.10 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) )
Assertion ishlatiN 𝐾 ∈ HL

Proof

Step Hyp Ref Expression
1 ishlati.1 𝐾 ∈ OML
2 ishlati.2 𝐾 ∈ CLat
3 ishlati.3 𝐾 ∈ AtLat
4 ishlati.b 𝐵 = ( Base ‘ 𝐾 )
5 ishlati.l = ( le ‘ 𝐾 )
6 ishlati.s < = ( lt ‘ 𝐾 )
7 ishlati.j = ( join ‘ 𝐾 )
8 ishlati.z 0 = ( 0. ‘ 𝐾 )
9 ishlati.u 1 = ( 1. ‘ 𝐾 )
10 ishlati.a 𝐴 = ( Atoms ‘ 𝐾 )
11 ishlati.9 𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∀ 𝑧𝐵 ( ( ¬ 𝑥 𝑧𝑥 ( 𝑧 𝑦 ) ) → 𝑦 ( 𝑧 𝑥 ) ) )
12 ishlati.10 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) )
13 1 2 3 3pm3.2i ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat )
14 11 12 pm3.2i ( ∀ 𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∀ 𝑧𝐵 ( ( ¬ 𝑥 𝑧𝑥 ( 𝑧 𝑦 ) ) → 𝑦 ( 𝑧 𝑥 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) )
15 4 5 6 7 8 9 10 ishlat2 ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∀ 𝑧𝐵 ( ( ¬ 𝑥 𝑧𝑥 ( 𝑧 𝑦 ) ) → 𝑦 ( 𝑧 𝑥 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )
16 13 14 15 mpbir2an 𝐾 ∈ HL