Metamath Proof Explorer


Theorem islidl

Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses islidl.s U=LIdealR
islidl.b B=BaseR
islidl.p +˙=+R
islidl.t ·˙=R
Assertion islidl IUIBIxBaIbIx·˙a+˙bI

Proof

Step Hyp Ref Expression
1 islidl.s U=LIdealR
2 islidl.b B=BaseR
3 islidl.p +˙=+R
4 islidl.t ·˙=R
5 rlmsca2 IR=ScalarringLModR
6 baseid Base=SlotBasendx
7 6 2 strfvi B=BaseIR
8 rlmbas BaseR=BaseringLModR
9 2 8 eqtri B=BaseringLModR
10 rlmplusg +R=+ringLModR
11 3 10 eqtri +˙=+ringLModR
12 rlmvsca R=ringLModR
13 4 12 eqtri ·˙=ringLModR
14 lidlval LIdealR=LSubSpringLModR
15 1 14 eqtri U=LSubSpringLModR
16 5 7 9 11 13 15 islss IUIBIxBaIbIx·˙a+˙bI