Metamath Proof Explorer


Theorem islln

Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b B=BaseK
llnset.c C=K
llnset.a A=AtomsK
llnset.n N=LLinesK
Assertion islln KDXNXBpApCX

Proof

Step Hyp Ref Expression
1 llnset.b B=BaseK
2 llnset.c C=K
3 llnset.a A=AtomsK
4 llnset.n N=LLinesK
5 1 2 3 4 llnset KDN=xB|pApCx
6 5 eleq2d KDXNXxB|pApCx
7 breq2 x=XpCxpCX
8 7 rexbidv x=XpApCxpApCX
9 8 elrab XxB|pApCxXBpApCX
10 6 9 bitrdi KDXNXBpApCX