Metamath Proof Explorer


Theorem llnset

Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b B = Base K
llnset.c C = K
llnset.a A = Atoms K
llnset.n N = LLines K
Assertion llnset K D N = x B | p A p C x

Proof

Step Hyp Ref Expression
1 llnset.b B = Base K
2 llnset.c C = K
3 llnset.a A = Atoms K
4 llnset.n N = LLines K
5 elex K D K V
6 fveq2 k = K Base k = Base K
7 6 1 eqtr4di k = K Base k = B
8 fveq2 k = K Atoms k = Atoms K
9 8 3 eqtr4di k = K Atoms k = A
10 fveq2 k = K k = K
11 10 2 eqtr4di k = K k = C
12 11 breqd k = K p k x p C x
13 9 12 rexeqbidv k = K p Atoms k p k x p A p C x
14 7 13 rabeqbidv k = K x Base k | p Atoms k p k x = x B | p A p C x
15 df-llines LLines = k V x Base k | p Atoms k p k x
16 1 fvexi B V
17 16 rabex x B | p A p C x V
18 14 15 17 fvmpt K V LLines K = x B | p A p C x
19 4 18 syl5eq K V N = x B | p A p C x
20 5 19 syl K D N = x B | p A p C x