Metamath Proof Explorer


Theorem islpir

Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P = LPIdeal R
lpiss.u U = LIdeal R
Assertion islpir R LPIR R Ring U = P

Proof

Step Hyp Ref Expression
1 lpival.p P = LPIdeal R
2 lpiss.u U = LIdeal R
3 fveq2 r = R LIdeal r = LIdeal R
4 fveq2 r = R LPIdeal r = LPIdeal R
5 3 4 eqeq12d r = R LIdeal r = LPIdeal r LIdeal R = LPIdeal R
6 2 1 eqeq12i U = P LIdeal R = LPIdeal R
7 5 6 syl6bbr r = R LIdeal r = LPIdeal r U = P
8 df-lpir LPIR = r Ring | LIdeal r = LPIdeal r
9 7 8 elrab2 R LPIR R Ring U = P