Database
BASIC ALGEBRAIC STRUCTURES
Vector spaces
Definition and basic properties
islvec
Next ⟩
lvecdrng
Metamath Proof Explorer
Ascii
Unicode
Theorem
islvec
Description:
The predicate "is a left vector space".
(Contributed by
NM
, 11-Nov-2013)
Ref
Expression
Hypothesis
islvec.1
⊢
F
=
Scalar
⁡
W
Assertion
islvec
⊢
W
∈
LVec
↔
W
∈
LMod
∧
F
∈
DivRing
Proof
Step
Hyp
Ref
Expression
1
islvec.1
⊢
F
=
Scalar
⁡
W
2
fveq2
⊢
f
=
W
→
Scalar
⁡
f
=
Scalar
⁡
W
3
2
1
eqtr4di
⊢
f
=
W
→
Scalar
⁡
f
=
F
4
3
eleq1d
⊢
f
=
W
→
Scalar
⁡
f
∈
DivRing
↔
F
∈
DivRing
5
df-lvec
⊢
LVec
=
f
∈
LMod
|
Scalar
⁡
f
∈
DivRing
6
4
5
elrab2
⊢
W
∈
LVec
↔
W
∈
LMod
∧
F
∈
DivRing