Metamath Proof Explorer


Theorem ismir

Description: Property of the image by the point inversion function. Definition 7.5 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirfv.b φ B P
ismir.1 φ C P
ismir.2 φ A - ˙ C = A - ˙ B
ismir.3 φ A C I B
Assertion ismir φ C = M B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirfv.b φ B P
10 ismir.1 φ C P
11 ismir.2 φ A - ˙ C = A - ˙ B
12 ismir.3 φ A C I B
13 1 2 3 4 5 6 7 8 9 mirfv φ M B = ι z P | A - ˙ z = A - ˙ B A z I B
14 1 2 3 6 9 7 mirreu3 φ ∃! z P A - ˙ z = A - ˙ B A z I B
15 oveq2 z = C A - ˙ z = A - ˙ C
16 15 eqeq1d z = C A - ˙ z = A - ˙ B A - ˙ C = A - ˙ B
17 oveq1 z = C z I B = C I B
18 17 eleq2d z = C A z I B A C I B
19 16 18 anbi12d z = C A - ˙ z = A - ˙ B A z I B A - ˙ C = A - ˙ B A C I B
20 19 riota2 C P ∃! z P A - ˙ z = A - ˙ B A z I B A - ˙ C = A - ˙ B A C I B ι z P | A - ˙ z = A - ˙ B A z I B = C
21 10 14 20 syl2anc φ A - ˙ C = A - ˙ B A C I B ι z P | A - ˙ z = A - ˙ B A z I B = C
22 11 12 21 mpbi2and φ ι z P | A - ˙ z = A - ˙ B A z I B = C
23 13 22 eqtr2d φ C = M B