Database BASIC ALGEBRAIC STRUCTURES Monoids Definition and basic properties of monoids ismnd  
				
		 
		
			
		 
		Description:   The predicate "is a monoid".  This is the defining theorem of a monoid
       by showing that a set is a monoid if and only if it is a set equipped
       with a closed, everywhere defined internal operation (so, a magma, see
       mndcl  ), whose operation is associative (so, a semigroup, see also
       mndass  ) and has a two-sided neutral element (see mndid  ).
       (Contributed by Mario Carneiro , 6-Jan-2015)   (Revised by AV , 1-Feb-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ismnd.b   ⊢   B  =  Base  G      
					 
					
						ismnd.p   ⊢   +  ˙ =  +  G      
					 
				
					Assertion 
					ismnd    ⊢   G  ∈  Mnd    ↔    ∀  a  ∈  B   ∀  b  ∈  B    a  +  ˙ b ∈  B    ∧   ∀  c  ∈  B   a  +  ˙ b +  ˙ c =  a  +  ˙ b  +  ˙ c          ∧   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a               
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ismnd.b  ⊢   B  =  Base  G      
						
							2 
								
							 
							ismnd.p  ⊢   +  ˙ =  +  G      
						
							3 
								1  2 
							 
							ismnddef   ⊢   G  ∈  Mnd    ↔    G  ∈  Smgrp    ∧   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a               
						
							4 
								
							 
							rexn0   ⊢   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a         →   B  ≠  ∅         
						
							5 
								
							 
							fvprc   ⊢   ¬   G  ∈  V      →   Base  G =  ∅         
						
							6 
								1  5 
							 
							eqtrid   ⊢   ¬   G  ∈  V      →   B  =  ∅         
						
							7 
								6 
							 
							necon1ai   ⊢   B  ≠  ∅    →   G  ∈  V         
						
							8 
								1  2 
							 
							issgrpv   ⊢   G  ∈  V    →    G  ∈  Smgrp    ↔   ∀  a  ∈  B   ∀  b  ∈  B    a  +  ˙ b ∈  B    ∧   ∀  c  ∈  B   a  +  ˙ b +  ˙ c =  a  +  ˙ b  +  ˙ c                
						
							9 
								4  7  8 
							 
							3syl   ⊢   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a         →    G  ∈  Smgrp    ↔   ∀  a  ∈  B   ∀  b  ∈  B    a  +  ˙ b ∈  B    ∧   ∀  c  ∈  B   a  +  ˙ b +  ˙ c =  a  +  ˙ b  +  ˙ c                
						
							10 
								9 
							 
							pm5.32ri   ⊢    G  ∈  Smgrp    ∧   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a          ↔    ∀  a  ∈  B   ∀  b  ∈  B    a  +  ˙ b ∈  B    ∧   ∀  c  ∈  B   a  +  ˙ b +  ˙ c =  a  +  ˙ b  +  ˙ c          ∧   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a               
						
							11 
								3  10 
							 
							bitri   ⊢   G  ∈  Mnd    ↔    ∀  a  ∈  B   ∀  b  ∈  B    a  +  ˙ b ∈  B    ∧   ∀  c  ∈  B   a  +  ˙ b +  ˙ c =  a  +  ˙ b  +  ˙ c          ∧   ∃  e  ∈  B   ∀  a  ∈  B    e  +  ˙ a =  a    ∧   a  +  ˙ e =  a