Metamath Proof Explorer


Theorem isnlly

Description: The property of being an n-locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion isnlly JN-Locally A JTopxJyxuneiJy𝒫xJ𝑡uA

Proof

Step Hyp Ref Expression
1 fveq2 j=Jneij=neiJ
2 1 fveq1d j=Jneijy=neiJy
3 2 ineq1d j=Jneijy𝒫x=neiJy𝒫x
4 oveq1 j=Jj𝑡u=J𝑡u
5 4 eleq1d j=Jj𝑡uAJ𝑡uA
6 3 5 rexeqbidv j=Juneijy𝒫xj𝑡uAuneiJy𝒫xJ𝑡uA
7 6 ralbidv j=Jyxuneijy𝒫xj𝑡uAyxuneiJy𝒫xJ𝑡uA
8 7 raleqbi1dv j=Jxjyxuneijy𝒫xj𝑡uAxJyxuneiJy𝒫xJ𝑡uA
9 df-nlly N-Locally A = jTop|xjyxuneijy𝒫xj𝑡uA
10 8 9 elrab2 JN-Locally A JTopxJyxuneiJy𝒫xJ𝑡uA