Metamath Proof Explorer


Theorem isof1oidb

Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021)

Ref Expression
Assertion isof1oidb H : A 1-1 onto B H Isom I , I A B

Proof

Step Hyp Ref Expression
1 f1of1 H : A 1-1 onto B H : A 1-1 B
2 f1fveq H : A 1-1 B x A y A H x = H y x = y
3 1 2 sylan H : A 1-1 onto B x A y A H x = H y x = y
4 fvex H y V
5 4 ideq H x I H y H x = H y
6 5 a1i H : A 1-1 onto B x A y A H x I H y H x = H y
7 ideqg y A x I y x = y
8 7 ad2antll H : A 1-1 onto B x A y A x I y x = y
9 3 6 8 3bitr4rd H : A 1-1 onto B x A y A x I y H x I H y
10 9 ralrimivva H : A 1-1 onto B x A y A x I y H x I H y
11 10 pm4.71i H : A 1-1 onto B H : A 1-1 onto B x A y A x I y H x I H y
12 df-isom H Isom I , I A B H : A 1-1 onto B x A y A x I y H x I H y
13 11 12 bitr4i H : A 1-1 onto B H Isom I , I A B