Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | isof1oidb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 | |
|
2 | f1fveq | |
|
3 | 1 2 | sylan | |
4 | fvex | |
|
5 | 4 | ideq | |
6 | 5 | a1i | |
7 | ideqg | |
|
8 | 7 | ad2antll | |
9 | 3 6 8 | 3bitr4rd | |
10 | 9 | ralrimivva | |
11 | 10 | pm4.71i | |
12 | df-isom | |
|
13 | 11 12 | bitr4i | |