Metamath Proof Explorer


Theorem isof1oidb

Description: A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021)

Ref Expression
Assertion isof1oidb H:A1-1 ontoBHIsomI,IAB

Proof

Step Hyp Ref Expression
1 f1of1 H:A1-1 ontoBH:A1-1B
2 f1fveq H:A1-1BxAyAHx=Hyx=y
3 1 2 sylan H:A1-1 ontoBxAyAHx=Hyx=y
4 fvex HyV
5 4 ideq HxIHyHx=Hy
6 5 a1i H:A1-1 ontoBxAyAHxIHyHx=Hy
7 ideqg yAxIyx=y
8 7 ad2antll H:A1-1 ontoBxAyAxIyx=y
9 3 6 8 3bitr4rd H:A1-1 ontoBxAyAxIyHxIHy
10 9 ralrimivva H:A1-1 ontoBxAyAxIyHxIHy
11 10 pm4.71i H:A1-1 ontoBH:A1-1 ontoBxAyAxIyHxIHy
12 df-isom HIsomI,IABH:A1-1 ontoBxAyAxIyHxIHy
13 11 12 bitr4i H:A1-1 ontoBHIsomI,IAB