Metamath Proof Explorer


Theorem isofr

Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isofr HIsomR,SABRFrASFrB

Proof

Step Hyp Ref Expression
1 isocnv HIsomR,SABH-1IsomS,RBA
2 id H-1IsomS,RBAH-1IsomS,RBA
3 isof1o H-1IsomS,RBAH-1:B1-1 ontoA
4 f1ofun H-1:B1-1 ontoAFunH-1
5 vex xV
6 5 funimaex FunH-1H-1xV
7 3 4 6 3syl H-1IsomS,RBAH-1xV
8 2 7 isofrlem H-1IsomS,RBARFrASFrB
9 1 8 syl HIsomR,SABRFrASFrB
10 id HIsomR,SABHIsomR,SAB
11 isof1o HIsomR,SABH:A1-1 ontoB
12 f1ofun H:A1-1 ontoBFunH
13 5 funimaex FunHHxV
14 11 12 13 3syl HIsomR,SABHxV
15 10 14 isofrlem HIsomR,SABSFrBRFrA
16 9 15 impbid HIsomR,SABRFrASFrB