Metamath Proof Explorer


Theorem isofrlem

Description: Lemma for isofr . (Contributed by NM, 29-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses isofrlem.1 φ H Isom R , S A B
isofrlem.2 φ H x V
Assertion isofrlem φ S Fr B R Fr A

Proof

Step Hyp Ref Expression
1 isofrlem.1 φ H Isom R , S A B
2 isofrlem.2 φ H x V
3 isof1o H Isom R , S A B H : A 1-1 onto B
4 1 3 syl φ H : A 1-1 onto B
5 f1ofn H : A 1-1 onto B H Fn A
6 n0 x y y x
7 fnfvima H Fn A x A y x H y H x
8 7 ne0d H Fn A x A y x H x
9 8 3expia H Fn A x A y x H x
10 9 exlimdv H Fn A x A y y x H x
11 6 10 syl5bi H Fn A x A x H x
12 11 expimpd H Fn A x A x H x
13 5 12 syl H : A 1-1 onto B x A x H x
14 f1ofo H : A 1-1 onto B H : A onto B
15 imassrn H x ran H
16 forn H : A onto B ran H = B
17 15 16 sseqtrid H : A onto B H x B
18 14 17 syl H : A 1-1 onto B H x B
19 13 18 jctild H : A 1-1 onto B x A x H x B H x
20 4 19 syl φ x A x H x B H x
21 dffr3 S Fr B z z B z w z z S -1 w =
22 sseq1 z = H x z B H x B
23 neeq1 z = H x z H x
24 22 23 anbi12d z = H x z B z H x B H x
25 ineq1 z = H x z S -1 w = H x S -1 w
26 25 eqeq1d z = H x z S -1 w = H x S -1 w =
27 26 rexeqbi1dv z = H x w z z S -1 w = w H x H x S -1 w =
28 24 27 imbi12d z = H x z B z w z z S -1 w = H x B H x w H x H x S -1 w =
29 28 spcgv H x V z z B z w z z S -1 w = H x B H x w H x H x S -1 w =
30 2 29 syl φ z z B z w z z S -1 w = H x B H x w H x H x S -1 w =
31 21 30 syl5bi φ S Fr B H x B H x w H x H x S -1 w =
32 20 31 syl5d φ S Fr B x A x w H x H x S -1 w =
33 4 adantr φ x A H : A 1-1 onto B
34 f1ofun H : A 1-1 onto B Fun H
35 33 34 syl φ x A Fun H
36 simpl w H x H x S -1 w = w H x
37 fvelima Fun H w H x y x H y = w
38 35 36 37 syl2an φ x A w H x H x S -1 w = y x H y = w
39 simpr w H x H x S -1 w = H x S -1 w =
40 ssel x A y x y A
41 40 imdistani x A y x x A y A
42 isomin H Isom R , S A B x A y A x R -1 y = H x S -1 H y =
43 1 41 42 syl2an φ x A y x x R -1 y = H x S -1 H y =
44 sneq H y = w H y = w
45 44 imaeq2d H y = w S -1 H y = S -1 w
46 45 ineq2d H y = w H x S -1 H y = H x S -1 w
47 46 eqeq1d H y = w H x S -1 H y = H x S -1 w =
48 43 47 sylan9bb φ x A y x H y = w x R -1 y = H x S -1 w =
49 39 48 syl5ibr φ x A y x H y = w w H x H x S -1 w = x R -1 y =
50 49 exp42 φ x A y x H y = w w H x H x S -1 w = x R -1 y =
51 50 imp φ x A y x H y = w w H x H x S -1 w = x R -1 y =
52 51 com3l y x H y = w φ x A w H x H x S -1 w = x R -1 y =
53 52 com4t φ x A w H x H x S -1 w = y x H y = w x R -1 y =
54 53 imp φ x A w H x H x S -1 w = y x H y = w x R -1 y =
55 54 reximdvai φ x A w H x H x S -1 w = y x H y = w y x x R -1 y =
56 38 55 mpd φ x A w H x H x S -1 w = y x x R -1 y =
57 56 rexlimdvaa φ x A w H x H x S -1 w = y x x R -1 y =
58 57 ex φ x A w H x H x S -1 w = y x x R -1 y =
59 58 adantrd φ x A x w H x H x S -1 w = y x x R -1 y =
60 59 a2d φ x A x w H x H x S -1 w = x A x y x x R -1 y =
61 32 60 syld φ S Fr B x A x y x x R -1 y =
62 61 alrimdv φ S Fr B x x A x y x x R -1 y =
63 dffr3 R Fr A x x A x y x x R -1 y =
64 62 63 syl6ibr φ S Fr B R Fr A