Metamath Proof Explorer


Theorem isomin

Description: Isomorphisms preserve minimal elements. Note that (`' R " { D } ) ` is Takeuti and Zaring's idiom for the initial segment { x | x R D } . Proposition 6.31(1) of TakeutiZaring p. 33. (Contributed by NM, 19-Apr-2004)

Ref Expression
Assertion isomin H Isom R , S A B C A D A C R -1 D = H C S -1 H D =

Proof

Step Hyp Ref Expression
1 neq0 ¬ H C S -1 H D = y y H C S -1 H D
2 vex y V
3 2 elima y H C x C x H y
4 ssel C A x C x A
5 isof1o H Isom R , S A B H : A 1-1 onto B
6 f1ofn H : A 1-1 onto B H Fn A
7 fnbrfvb H Fn A x A H x = y x H y
8 7 ex H Fn A x A H x = y x H y
9 5 6 8 3syl H Isom R , S A B x A H x = y x H y
10 4 9 syl9r H Isom R , S A B C A x C H x = y x H y
11 10 imp31 H Isom R , S A B C A x C H x = y x H y
12 11 rexbidva H Isom R , S A B C A x C H x = y x C x H y
13 3 12 bitr4id H Isom R , S A B C A y H C x C H x = y
14 fvex H D V
15 2 eliniseg H D V y S -1 H D y S H D
16 14 15 mp1i H Isom R , S A B C A y S -1 H D y S H D
17 13 16 anbi12d H Isom R , S A B C A y H C y S -1 H D x C H x = y y S H D
18 elin y H C S -1 H D y H C y S -1 H D
19 r19.41v x C H x = y y S H D x C H x = y y S H D
20 17 18 19 3bitr4g H Isom R , S A B C A y H C S -1 H D x C H x = y y S H D
21 20 adantrr H Isom R , S A B C A D A y H C S -1 H D x C H x = y y S H D
22 breq1 H x = y H x S H D y S H D
23 22 biimpar H x = y y S H D H x S H D
24 vex x V
25 24 eliniseg D A x R -1 D x R D
26 25 ad2antll H Isom R , S A B x A D A x R -1 D x R D
27 isorel H Isom R , S A B x A D A x R D H x S H D
28 26 27 bitrd H Isom R , S A B x A D A x R -1 D H x S H D
29 23 28 syl5ibr H Isom R , S A B x A D A H x = y y S H D x R -1 D
30 29 exp32 H Isom R , S A B x A D A H x = y y S H D x R -1 D
31 4 30 syl9r H Isom R , S A B C A x C D A H x = y y S H D x R -1 D
32 31 com34 H Isom R , S A B C A D A x C H x = y y S H D x R -1 D
33 32 imp32 H Isom R , S A B C A D A x C H x = y y S H D x R -1 D
34 33 reximdvai H Isom R , S A B C A D A x C H x = y y S H D x C x R -1 D
35 21 34 sylbid H Isom R , S A B C A D A y H C S -1 H D x C x R -1 D
36 elin x C R -1 D x C x R -1 D
37 36 exbii x x C R -1 D x x C x R -1 D
38 neq0 ¬ C R -1 D = x x C R -1 D
39 df-rex x C x R -1 D x x C x R -1 D
40 37 38 39 3bitr4i ¬ C R -1 D = x C x R -1 D
41 35 40 syl6ibr H Isom R , S A B C A D A y H C S -1 H D ¬ C R -1 D =
42 41 exlimdv H Isom R , S A B C A D A y y H C S -1 H D ¬ C R -1 D =
43 1 42 syl5bi H Isom R , S A B C A D A ¬ H C S -1 H D = ¬ C R -1 D =
44 43 con4d H Isom R , S A B C A D A C R -1 D = H C S -1 H D =
45 5 6 syl H Isom R , S A B H Fn A
46 fnfvima H Fn A C A x C H x H C
47 46 3expia H Fn A C A x C H x H C
48 47 adantrr H Fn A C A D A x C H x H C
49 45 48 sylan H Isom R , S A B C A D A x C H x H C
50 49 adantrd H Isom R , S A B C A D A x C x R -1 D H x H C
51 27 biimpd H Isom R , S A B x A D A x R D H x S H D
52 fvex H x V
53 52 eliniseg H D V H x S -1 H D H x S H D
54 14 53 ax-mp H x S -1 H D H x S H D
55 51 54 syl6ibr H Isom R , S A B x A D A x R D H x S -1 H D
56 26 55 sylbid H Isom R , S A B x A D A x R -1 D H x S -1 H D
57 56 exp32 H Isom R , S A B x A D A x R -1 D H x S -1 H D
58 4 57 syl9r H Isom R , S A B C A x C D A x R -1 D H x S -1 H D
59 58 com34 H Isom R , S A B C A D A x C x R -1 D H x S -1 H D
60 59 imp32 H Isom R , S A B C A D A x C x R -1 D H x S -1 H D
61 60 impd H Isom R , S A B C A D A x C x R -1 D H x S -1 H D
62 50 61 jcad H Isom R , S A B C A D A x C x R -1 D H x H C H x S -1 H D
63 elin H x H C S -1 H D H x H C H x S -1 H D
64 62 36 63 3imtr4g H Isom R , S A B C A D A x C R -1 D H x H C S -1 H D
65 n0i H x H C S -1 H D ¬ H C S -1 H D =
66 64 65 syl6 H Isom R , S A B C A D A x C R -1 D ¬ H C S -1 H D =
67 66 exlimdv H Isom R , S A B C A D A x x C R -1 D ¬ H C S -1 H D =
68 38 67 syl5bi H Isom R , S A B C A D A ¬ C R -1 D = ¬ H C S -1 H D =
69 44 68 impcon4bid H Isom R , S A B C A D A C R -1 D = H C S -1 H D =