| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isofrlem.1 |
⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
isofrlem.2 |
⊢ ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 3 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 5 |
|
f1ofn |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) |
| 6 |
|
n0 |
⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 7 |
|
fnfvima |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( 𝐻 “ 𝑥 ) ) |
| 8 |
7
|
ne0d |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 “ 𝑥 ) ≠ ∅ ) |
| 9 |
8
|
3expia |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝑥 → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 10 |
9
|
exlimdv |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 11 |
6 10
|
biimtrid |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 12 |
11
|
expimpd |
⊢ ( 𝐻 Fn 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 13 |
5 12
|
syl |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 14 |
|
f1ofo |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –onto→ 𝐵 ) |
| 15 |
|
imassrn |
⊢ ( 𝐻 “ 𝑥 ) ⊆ ran 𝐻 |
| 16 |
|
forn |
⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ran 𝐻 = 𝐵 ) |
| 17 |
15 16
|
sseqtrid |
⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) |
| 18 |
14 17
|
syl |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) |
| 19 |
13 18
|
jctild |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) ) |
| 21 |
|
dffr3 |
⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 22 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( 𝑧 ⊆ 𝐵 ↔ ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) ) |
| 23 |
|
neeq1 |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( 𝑧 ≠ ∅ ↔ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 24 |
22 23
|
anbi12d |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) ↔ ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) ) |
| 25 |
|
ineq1 |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 27 |
26
|
rexeqbi1dv |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 28 |
24 27
|
imbi12d |
⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ↔ ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 29 |
28
|
spcgv |
⊢ ( ( 𝐻 “ 𝑥 ) ∈ V → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 30 |
2 29
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 31 |
21 30
|
biimtrid |
⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 32 |
20 31
|
syl5d |
⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 33 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 34 |
|
f1ofun |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐻 ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → Fun 𝐻 ) |
| 36 |
|
simpl |
⊢ ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → 𝑤 ∈ ( 𝐻 “ 𝑥 ) ) |
| 37 |
|
fvelima |
⊢ ( ( Fun 𝐻 ∧ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐻 ‘ 𝑦 ) = 𝑤 ) |
| 38 |
35 36 37
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐻 ‘ 𝑦 ) = 𝑤 ) |
| 39 |
|
simpr |
⊢ ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) |
| 40 |
|
ssel |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 41 |
40
|
imdistani |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 42 |
|
isomin |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ∅ ) ) |
| 43 |
1 41 42
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ∅ ) ) |
| 44 |
|
sneq |
⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → { ( 𝐻 ‘ 𝑦 ) } = { 𝑤 } ) |
| 45 |
44
|
imaeq2d |
⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) = ( ◡ 𝑆 “ { 𝑤 } ) ) |
| 46 |
45
|
ineq2d |
⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) ) |
| 47 |
46
|
eqeq1d |
⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 48 |
43 47
|
sylan9bb |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝐻 ‘ 𝑦 ) = 𝑤 ) → ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 49 |
39 48
|
imbitrrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝐻 ‘ 𝑦 ) = 𝑤 ) → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 50 |
49
|
exp42 |
⊢ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) ) |
| 51 |
50
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) |
| 52 |
51
|
com3l |
⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) |
| 53 |
52
|
com4t |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) |
| 54 |
53
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 55 |
54
|
reximdvai |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( ∃ 𝑦 ∈ 𝑥 ( 𝐻 ‘ 𝑦 ) = 𝑤 → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 56 |
38 55
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) |
| 57 |
56
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 58 |
57
|
ex |
⊢ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 59 |
58
|
adantrd |
⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 60 |
59
|
a2d |
⊢ ( 𝜑 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 61 |
32 60
|
syld |
⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 62 |
61
|
alrimdv |
⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 63 |
|
dffr3 |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 64 |
62 63
|
imbitrrdi |
⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |