Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Sections, inverses, isomorphisms
isorcl2
Next ⟩
isoval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
isorcl2
Description:
Reverse closure for isomorphism relations.
(Contributed by
Zhi Wang
, 17-Nov-2025)
Ref
Expression
Hypotheses
isorcl.i
⊢
I
=
Iso
⁡
C
isorcl.f
⊢
φ
→
F
∈
X
I
Y
isorcl2.b
⊢
B
=
Base
C
Assertion
isorcl2
⊢
φ
→
X
∈
B
∧
Y
∈
B
Proof
Step
Hyp
Ref
Expression
1
isorcl.i
⊢
I
=
Iso
⁡
C
2
isorcl.f
⊢
φ
→
F
∈
X
I
Y
3
isorcl2.b
⊢
B
=
Base
C
4
eqid
⊢
Inv
⁡
C
=
Inv
⁡
C
5
1
2
isorcl
⊢
φ
→
C
∈
Cat
6
3
4
5
1
isofval2
⊢
φ
→
I
=
x
∈
B
,
y
∈
B
⟼
dom
⁡
x
Inv
⁡
C
y
7
6
oveqd
⊢
φ
→
X
I
Y
=
X
x
∈
B
,
y
∈
B
⟼
dom
⁡
x
Inv
⁡
C
y
Y
8
2
7
eleqtrd
⊢
φ
→
F
∈
X
x
∈
B
,
y
∈
B
⟼
dom
⁡
x
Inv
⁡
C
y
Y
9
eqid
⊢
x
∈
B
,
y
∈
B
⟼
dom
⁡
x
Inv
⁡
C
y
=
x
∈
B
,
y
∈
B
⟼
dom
⁡
x
Inv
⁡
C
y
10
9
elmpocl
⊢
F
∈
X
x
∈
B
,
y
∈
B
⟼
dom
⁡
x
Inv
⁡
C
y
Y
→
X
∈
B
∧
Y
∈
B
11
8
10
syl
⊢
φ
→
X
∈
B
∧
Y
∈
B