Metamath Proof Explorer


Theorem ispisys

Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020)

Ref Expression
Hypothesis ispisys.p P = s 𝒫 𝒫 O | fi s s
Assertion ispisys S P S 𝒫 𝒫 O fi S S

Proof

Step Hyp Ref Expression
1 ispisys.p P = s 𝒫 𝒫 O | fi s s
2 fveq2 s = S fi s = fi S
3 id s = S s = S
4 2 3 sseq12d s = S fi s s fi S S
5 4 1 elrab2 S P S 𝒫 𝒫 O fi S S