Metamath Proof Explorer


Theorem isprm4

Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion isprm4 PP2z2zPz=P

Proof

Step Hyp Ref Expression
1 isprm2 PP2zzPz=1z=P
2 eluz2b3 z2zz1
3 2 imbi1i z2zPz=Pzz1zPz=P
4 impexp zz1zPz=Pzz1zPz=P
5 bi2.04 z1zPz=PzPz1z=P
6 df-ne z1¬z=1
7 6 imbi1i z1z=P¬z=1z=P
8 df-or z=1z=P¬z=1z=P
9 7 8 bitr4i z1z=Pz=1z=P
10 9 imbi2i zPz1z=PzPz=1z=P
11 5 10 bitri z1zPz=PzPz=1z=P
12 11 imbi2i zz1zPz=PzzPz=1z=P
13 4 12 bitri zz1zPz=PzzPz=1z=P
14 3 13 bitri z2zPz=PzzPz=1z=P
15 14 ralbii2 z2zPz=PzzPz=1z=P
16 15 anbi2i P2z2zPz=PP2zzPz=1z=P
17 1 16 bitr4i PP2z2zPz=P